与的值相等的是( ). A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
精英家教网

查看答案和解析>>

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作:在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,?ABCD中,若AB=1,BC=2,则?ABCD为1阶准菱形.
(1)判断与推理:

①邻边长分别为2和3的平行四边形是________阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图2,把?ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.
(2)操作、探究与计算:
①已知?ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出?ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知?ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出?ABCD是几阶准菱形.

查看答案和解析>>

如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
作业宝

查看答案和解析>>

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.

(1)判断与推理:

①邻边长分别为2和3的平行四边形是 2 阶准菱形;

②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.

(2)操作、探究与计算:

①已知▱ABCD的邻边长分别为1,aa>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知▱ABCD的邻边长分别为abab),满足a=6b+rb=5r,请写出▱ABCD是几阶准菱形.

查看答案和解析>>

如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.

查看答案和解析>>


同步练习册答案