3.如图9.已知∠ABC=40°.∠ACB=60°.BO.CO平分∠ABC和∠ACB.DE过O点.且DE∥BC.求∠BOC的度数. 查看更多

 

题目列表(包括答案和解析)

(2013•德州)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

查看答案和解析>>

(2012•历下区二模)(1)已知:如图1,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.求证:DE=DF.
(2)如图2,已知△ABC内接于⊙O,AC是⊙O的直径,D是
AB
的中点,过点D作直线BC的垂线,分别交CB,CA的延长线于E,F,求证:EF是⊙O的切线.

查看答案和解析>>

精英家教网定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)精英家教网

查看答案和解析>>

探索归纳:
(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于
C
C

A.90°   B.135°     C.270°       D.315°
(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=
220°
220°

(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是
∠1+∠2=180°+∠A
∠1+∠2=180°+∠A

(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.

查看答案和解析>>

如图1,已知△ABC是等边三角形,点D是边BC的中点,∠ADE=60°,且DE与∠ACB的外角平分线CE相交于点E.
(1)证明△ADE是等边三角形,请写出证明过程;
(2)若D是BC的延长线上(C点除外)的任意一点,其他条件不变(如图2)那么△ADE是等边三角形是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案