如图△ABC中.AD,AE分别是△ABC的高和角平分线.∠B=42°,∠DAE=14°.求∠CAD和∠C的度数. 查看更多

 

题目列表(包括答案和解析)

(本题满分8分)如图,△ABC中,AD是边BC上的中线,过点AAE∥BC,过点DDE∥ABAC、AE分别交于点O、点E,连接EC

【小题1】(1)求证:AD=EC
【小题2】(2)当∠BAC=90°时,求证:四边形ADCE是菱形;

查看答案和解析>>

(本题满分8分)如图,△ABC中,AD是边BC上的中线,过点AAE∥BC,过点DDE∥ABAC、AE分别交于点O、点E,连接EC

【小题1】(1)求证:AD=EC
【小题2】(2)当∠BAC=90°时,求证:四边形ADCE是菱形;

查看答案和解析>>

(本题满分8分)如图,△ABC中,AD是边BC上的中线,过点AAE∥BC,过点DDE∥ABAC、AE分别交于点O、点E,连接EC

小题1:(1)求证:AD=EC
小题2:(2)当∠BAC=90°时,求证:四边形ADCE是菱形;

查看答案和解析>>

(本小题满分10分)

(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是           

(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是            

(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是            

图1             图2                图3

拓展与应用

(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是            

(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,

 

CF=CD,连接AF,CE(如图5),则四边形AECF的面积是            

 

(3)(如图6)ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值          ,并写出理由;若变化,说明是怎样变化的.

   图4                  图5                     图6

 

查看答案和解析>>

(本小题满分10分)
(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是           
(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是            
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是            

图1             图2                图3
拓展与应用
(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是            
(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,
CF=CD,连接AF,CE(如图5),则四边形AECF的面积是            
(3)(如图6)ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值         ,并写出理由;若变化,说明是怎样变化的.

图4                  图5                     图6

查看答案和解析>>


同步练习册答案