学会运用本节的思想方法探究另外的轴对称图形. 第四节 探索轴对称的性质 教学目标:1.掌握探索的方法. 查看更多

 

题目列表(包括答案和解析)

如图是美国总统Garfield于1876年给出的一种验证勾股定理的办法,你能利用它验证勾股定理吗?说一说这个方法和本节的探索方法的联系.

查看答案和解析>>

(1)解二元一次方程组:
3x-y=-4①
x-2y=-3②

(2)试运用解二元一次方程组的思想方法,解三元一次方程组:
x+y+z=22①
3x+y=47②
x-4z=2③

查看答案和解析>>

在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x-3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法:
x2+2x-3=x2+2×x×1+12-1-3------①
=(x+1)2-22------②
=…
解决下列问题:
(1)填空:在上述材料中,运用了
转化
转化
的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法;
(2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x-3;
(3)请用上述方法因式分解x2-4x-5.

查看答案和解析>>

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

(2012•白下区二模)(1)解方程组 
y=x+1
3x-2y=-1

(2)请运用解二元一次方程组的思想方法解方程组
x+y=1
x+y2=3

查看答案和解析>>


同步练习册答案