教师应多收集一些由全等图形拼成的美丽图案.以提高学生学习这一课的兴趣.在组织学生欣赏这些图案时.最好让学生发现这些图案都是由全等图形拼成的.从而激发学生动手操作的欲望. 查看更多

 

题目列表(包括答案和解析)

如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接.称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.

若已知具有同形结构的正n边形的每个风角度数为a,满足∶360=ka(k为正整数),多这形外角和为360°,则k关于边数n的函数是________(写出n的取值范围即可).

查看答案和解析>>

如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接.称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.

若已知具有同形结构的正n边形的每个风角度数为,满足:360=k(k为正整数),多这形外角和为360°,则k关于边数n的函数是               (写出n的取值范围即可).

 


查看答案和解析>>

95、小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.
小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”
(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.
(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.
(3)要判断三角形全等,从这个问题中你得到了什么启发?

查看答案和解析>>

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>

24、如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少.

查看答案和解析>>


同步练习册答案