如图.关于线段.射线或直线的条数.说法正确的是 ( ) A.五条线段.三条射线 B.一条直线.三条线段 C.三条线段.三条射线 D.三条线段.两条射线.一条直线 查看更多

 

题目列表(包括答案和解析)

如图,直线,连结,直线及线段把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点落在某个部分时,连结,构成三个角.(提示:有公共端点的两条重合的射线所组成的角是角.)

(1)当动点落在第①部分时,求证:

(2)当动点落在第②部分时,是否成立(直接回答成立或不成立)?

(3)当动点在第③部分时,全面探究之间的关系,并写出动点的具体位置和相应的结论.选择其中一种结论加以证明.

查看答案和解析>>

CD经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE(    )CF;EF(    )|BE-AF|(填“>”,“<”或“=”); ②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件(    ),使①中的两个结论仍然成立,并证明两个结论成立;
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想。(不要求证明)

查看答案和解析>>

如图,关于线段、射线或直线的条数,下列说法正确的是

[  ]

A.五条线段,三条射线

B.一条直线,三条线段

C.三条线段,三条射线

D.三条线段,两条射线,一条直线

查看答案和解析>>

27、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.

查看答案和解析>>

如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以说明.

查看答案和解析>>


同步练习册答案