题目列表(包括答案和解析)
解:(1)由题意知,当
、
运动到
秒时,如图①,过
作
交
于
点,则四边形
是平行四边形.
∵
,
.
∴
.
∴
.
∴
.解得
. 5分
(2)分三种情况讨论:
① 当
时,如图②作
交
于
,则有
即.
∵
,
∴
,
∴
,
解得
. 6分
② 当
时,如图③,过
作
于H.
则
,
∴
.
∴
.7分
③ 当
时,如图④.
则
.
. -------------------------------------8分
综上所述,当
、
或
时,
为等腰三角形.
![]()
| 1 | a |
如图所示,已知在直角梯形
中,
轴于点
.动点
从
点出发,沿
轴正方向以每秒1个单位长度的速度移动.过
点作
垂直于直线
,垂足为
.设
点移动的时间为
秒(
),
与直角梯形
重叠部分的面积为
.
![]()
(1)求经过
三点的抛物线解析式;
(2)将
绕着点
顺时针旋转
,是否存在
,使得
的顶点
或
在抛物线上?若存在,直接写出
的值;若不存在,请说明理由.
(3)求
与
的函数关系式.
【解析】(1)设抛物线解析式为y=ax2+bx,把已知坐标代入求出抛物线的解析式(2)根据旋转的性质,代入解析式,判断是否存在(3)求出S的面积,根据t的取值不同分三种情况讨论S与t的函数关系式
如图所示,已知在直角梯形
中,
轴于点
.动点
从
点出发,沿
轴正方向以每秒1个单位长度的速度移动.过
点作
垂直于直线
,垂足为
.设
点移动的时间为
秒(
),
与直角梯形
重叠部分的面积为
.
![]()
(1)求经过
三点的抛物线解析式;
(2)将
绕着点
顺时针旋转
,是否存在
,使得
的顶点
或
在抛物线上?若存在,直接写出
的值;若不存在,请说明理由.
(3)求
与
的函数关系式.
【解析】(1)设抛物线解析式为y=ax2+bx,把已知坐标代入求出抛物线的解析式(2)根据旋转的性质,代入解析式,判断是否存在(3)求出S的面积,根据t的取值不同分三种情况讨论S与t的函数关系式
| 1 |
| a |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com