D,7.C,8. 0.1.2.提示:不等式组的解为:-1<x≤2.整数解为:0.1.2 查看更多

 

题目列表(包括答案和解析)

2010年11月12日至27日广州成功举办了第16届亚运会,当时广州亚组委提出“让广州靓起来”的口号,在“让广州靓起来”的活动中,广州市某社区决定利用9000盆菊花和8100盆太阳花搭配A,B两种园艺造型共100个摆放在社区.搭配每种园艺造型所需的花卉情况如下表所示:
需要菊花(盆) 需要太阳花(盆)
一个A造型 100 60
一个B造型 80 100
综合上述信息,设搭配A种园艺造型x个,解答下列问题:
(1)请写出满足题意的不等式组,并求出其解集;
(2)若搭配一个A种园艺造型的成本为600元,搭配一个B种园艺造型的成本为800元,试确定搭配A种造型多少个时,可使这100个园艺造型的成本最低?

查看答案和解析>>

2010年11月12日至27日广州成功举办了第16届亚运会,当时广州亚组委提出“让广州靓起来”的口号,在“让广州靓起来”的活动中,广州市某社区决定利用9000盆菊花和8100盆太阳花搭配A,B两种园艺造型共100个摆放在社区.搭配每种园艺造型所需的花卉情况如下表所示:
需要菊花(盆)需要太阳花(盆)
一个A造型10060
一个B造型80100
综合上述信息,设搭配A种园艺造型x个,解答下列问题:
(1)请写出满足题意的不等式组,并求出其解集;
(2)若搭配一个A种园艺造型的成本为600元,搭配一个B种园艺造型的成本为800元,试确定搭配A种造型多少个时,可使这100个园艺造型的成本最低?

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

  (1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m.隧道顶部最高处距地面6.25m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

  (2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全.问该隧道能否让最宽3m.最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

  (3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为,求的最大值。

Ⅱ.如图④,过原点作一条的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q。问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践一应用——探究的过程:

(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10 m.隧道顶部最高处距地面6.25 m,并画出了隧道截面图.建立了如图②所示的直角坐标系.请你求出抛物线的解析式.

(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5 m.为了确保安全.问该隧道能否让最宽3 m.最高3.5 m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?

(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述抛物线模型塑.提出了以下两个问题,请予解答:

Ⅰ.如图③,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上.顶点A、B落在x轴上.设矩形ABCD的周长为l,求l的最大值.

Ⅱ.如图④,过原点作一条y=x的直线OM,交抛物线于点M.交抛物线对称轴于点N,P为直线OM上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案