25.如图12.在平面直角坐标系中.第一次将变换成.第二次将 变换成.第三次将变换成. 已知.. .,.... (1)观察每次变换前后的三角形有何变 化.找出规律.按此变化规律再将 变换成.则的坐标 为 .的坐标为 . 题找到的规律将进行次变换.得到.比较每次变换中 三角形的顶点有何变化.找出规律.推测的坐标为 .的坐标为 . 查看更多

 

题目列表(包括答案和解析)

如图12,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=3/4。将△OAB绕着原点O逆时针旋转90o,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180o,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2

(1)求抛物线的解析式;

(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标;

(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

如图(1),在平面直角坐标系中,直线y=x+6与两坐标轴分别交于A、B两点,M为y轴正半轴上一点,⊙M过A、B两点,交x轴正半轴于点C,过B作x轴的平行线l,N点的坐标为(-12,5),⊙N与直线l相切于点D.

(1)求∠ABO的度数及圆心M的坐标;

(2)若⊙N以每秒1个单位的速度沿直线l向右平移,同时直线AB沿x轴负方向匀速平移,当⊙N第一次与⊙M相切时,直线AB也恰好与⊙N第一次相切,求直线AB每秒平移多少个单位长度?

(3)如图(2),P为直线l上的一个动点,过P作AB的垂线分别交线段BC、x轴于Q、R两点,过P作x轴的垂线,垂足为S(S在A点的左侧).当P点运动时,BQ-AS的值是否改变?若不变,请求其值;若改变,请求其值变化的范围.

查看答案和解析>>

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点A(0,2),C(-1,0),如图所示.
(1)求点B的坐标;
(2)若以(-
1
2
,-
17
8
)为顶点的抛物线经过点B,求该抛物线的解析式;
(3)在(2)中的抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

附加题:在平面直角坐标系中,直线y=-
1
2
x
+5与x轴交于B点,与正比例函数y=kx(k≠0)的图象交于第一象限内的点A(如图(1))
(1)若k=
1
2
时,①求点A的坐标;②以O、A、B三点为顶点在图(1)中画出平行四边形,并直接写出平行四边形第四个顶点的坐标;
(2)若△OAB的面积是5,求此时点A的坐标及k的值(图(2)备用)精英家教网

查看答案和解析>>

(2012•滨海县二模)如图1,在平面直角坐标系中,点M(0,-3),⊙M与x轴交于点A、B,与y轴交于点C、E;抛物线y=ax2+(4a-2)x-8(a≠0)经过A、C两点;
(1)求点A、B、C的坐标;
(2)当a取何值时,抛物线y=ax2+(4a-2)x-8(a≠0)的对称轴与⊙M相切?
(3)如图2,当抛物线的顶点D在第四象限内时,连接BC、BD,且tan∠CBD=
12

①试确定a的值;
②设此时的抛物线与x轴的另一个交点是点F,在抛物线的对称轴上找一点T,使|TM-TF|达到最大,并求出最大值.(请在图2中作出点T)

查看答案和解析>>


同步练习册答案