当a= 时.代数式2+a2的值最小.最小值是 查看更多

 

题目列表(包括答案和解析)

在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).

(1)当△ABC三边分别为6、8、9时,△ABC为      三角形;当△ABC三边分别为6、8、11时,△ABC为      三角形.

(2)猜想,当a2+b2      c2时,△ABC为锐角三角形;当a2+b2      c2时,△ABC为钝角三角形.

(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

 

查看答案和解析>>

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=
-3
-3
时,它有最小值,是
-7
-7

解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=
3
3
时,代数式(a-3)2+5有最小值,是
5
5

(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它.下面我们就求函数的极值,介绍一下配方法.
例:已知代数式a2+6a+2,当a=______时,它有最小值,是______.
解:a2+6a+2=a2+6a+9-9+2=(a+3)2-9+2=(a+3)2-7
因为(a+3)2≥0,所以(a+3)2-7≥-7.
所以当a=-3时,它有最小值,是-7.
参考例题,试求:
(1)填空:当a=______时,代数式(a-3)2+5有最小值,是______.
(2)已知代数式a2+8a+2,当a为何值时,它有最小值,是多少?

查看答案和解析>>

把2008个正整数1,2,3,4,…,2008按如图方式排列成一个表.
(1)如图,用一正方形框,在表中任意框住4个数,记左上角的一个数为x,则这4个数的和是
 
.(用含x的代数式表示).
(2)当(1)中被框住的4个数之和等于216时,x的值为多少?
(3)在(1)中能否框住这样的4个数,它们的和等于296?若能,则求出x的值;若不能,则说明理由.
(4)从左到右,第1至第7列各列的所有数之和分别记为a1,a2,a3,a4,a5,a6,a7,则这7个数中,最大数与最小数之差等于
 
(直接填出结果,不写计算过程).
精英家教网

查看答案和解析>>


同步练习册答案