3.在下列方程中.解最小的方程是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{-2.6}=-2,{4}=4,{-5}=-5,在此规定下任一实数都能写成如下形式:x={x}-b,其中o≤b<1;
(1)直接写出{x}与x,x+1的大小关系;
(2)根据(1)中的关系式解决下列问题:
    ①求满足{3x+7}=4的x的取值范围;
    ②解方程:{3.5x-2}=2x+
14

查看答案和解析>>

设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{-2.6}=-2,{4}=4,{-5}=-5,在此规定下任一实数都能写成如下形式:x={x}-b,其中o≤b<1;
(1)直接写出{x}与x,x+1的大小关系;
(2)根据(1)中的关系式解决下列问题:
    ①求满足{3x+7}=4的x的取值范围;
    ②解方程:{3.5x-2}=2x+数学公式

查看答案和解析>>

设x是实数,现在我们用{x}表示不小于x的最小整数,如{3.2}=4,{-2.6}=-2,{4}=4,{-5}=-5,在此规定下任一实数都能写成如下形式:x={x}-b,其中o≤b<1;
(1)直接写出{x}与x,x+1的大小关系;
(2)根据(1)中的关系式解决下列问题:
①求满足{3x+7}=4的x的取值范围;
②解方程:{3.5x-2}=2x+
1
4

查看答案和解析>>

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式;
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m,为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴上,设矩形ABCD的周长为l求l的最大值;
II.如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|当A、B两点都不在原点时,

①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.

(2)回答下列问题:

①数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,

数轴上表示1和-3的两点之间的距离是________;

②数轴上表示x和-1的两点A和B之间的距离是________,如果|AB|=3,那么x________;

③当代数式|x+2|十|x-5|取最小值时,相应的x的取值范围是________

④解方程∣x+2∣+∣x-5∣=9

查看答案和解析>>


同步练习册答案