21.[探究题]在数学活动中.小明为了求+的值.设计了如图(1)所示的几何图形. (1)请你利用这个几何图形求+的值为 , 所示.再设计一个能求+的值的几种图形. 查看更多

 

题目列表(包括答案和解析)

在数学文化节第一轮活动中,我们以探讨一个趣题的方式纪念了数学大师欧拉诞辰300周年.著名数学家拉普拉斯说过:“读读欧拉,他是我们所有人的导师.”是啊!欧拉在数学上的贡献实在太多了,即使在初等数学中也到处可见他的身影.我们再来看看欧拉研究过的“36军官问题”:
从6支部队中各选出6名不同军衔的军官,将这36名军官排成一个6行6列的方阵,要求每行每列的6个军官分别来自不同的部队,并具有不同的军衔.用大写字母A,B,C,D,E,F分别表示6支不同的部队,用小写字母a,b,c,d,e,f分别表示6种不同的军衔,于是问题转化为:在6×6的方格阵中,每个方格分别填入一个大写字母和一个小写字母,使每行和每列中的大小写字母只能各出现一次(通常称这种方阵为欧拉方阵或正交拉丁方).欧拉搅尽脑汁,也没能排出符合要求的6×6方阵,他猜想并不存在这样的6×6方阵.100多年以后,才有人证明了欧拉的这个猜想是正确的.
于是欧拉继而探究了其他情形,例如,他分别作出了3×3,4×4,5×5正交拉丁方,并证明了当n除以4的余数不等于2时,n×n正交拉丁方是存在的.
正交拉丁方在药品配方试验设计等方面有着广泛应用.现在流行的“数独”游戏和比赛,就是发源于拉丁方问题呢!
如图是一个5×5正交拉丁方,请将剩余的字母填上

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
【小题1】填充甲同学所得结果中的数据;
【小题2】 写出在乙同学所得结果的求解过程;
【小题3】当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
【小题1】填充甲同学所得结果中的数据;
【小题2】 写出在乙同学所得结果的求解过程;
【小题3】当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如下一个正确结论(或结果):
甲:△AEF的边AE=     cm,EF=    cm;
乙:△FDM的周长为16 cm;
丙:EG=BF.
你的任务:
小题1:填充甲同学所得结果中的数据;
小题2: 写出在乙同学所得结果的求解过程;
小题3:当点F在AD边上除点A、D外的任何一处(如图2)时:
① 试问乙同学的结果是否发生变化?请证明你的结论;
② 丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程  ▲ 

(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

 

查看答案和解析>>


同步练习册答案