1 三角形的再认识同步练习 查看更多

 

题目列表(包括答案和解析)

在△ABC中,AB、BC、AC三边的长分别为
10
5
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需要求△ABC的高,而借用网格就能计算出它的面积,这种方法叫做构图法.
(1)△ABC的面积为:
(2)若△DEF三边的长分别为
13
、2
5
29
,请在图①的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
(3)利用第(2)小题解题方法完成下题:如图②,一个六边形绿化区ABCDEF被分割成7个部分,其中正方形ABQP,CDRQ,EFPR的面积分别为13,20,29,且△PQR、△BCQ、△DER、△APF的面积相等,求六边形绿化区ABCDEF的面积.

查看答案和解析>>

问题背景:在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶精英家教网点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
 

(2)画△DEF,DE、EF、DF三边的长分别为
2
8
10

①判断三角形的形状,说明理由.
②求这个三角形的面积.

查看答案和解析>>

31、课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.

查看答案和解析>>

问题背景:
在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.我们把上述求△ABC面积的方法叫做构图法.
(1)若△ABC三边的长分别为
5
a,2
2
a,
17
a
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
思维拓展:
(2)若△ABC三边的长分别为
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
探索创新:
(3)已知a、b都是正数,a+b=3,求当a、b为何值时
a2+4
+
b2+25
有最小值,并求这个最小值.
(4)已知a,b,c,d都是正数,且a2+b2=c2,c
a2-d2
=a2,求证:ab=cd.

查看答案和解析>>

精英家教网如图,已知△A1B1C1的面积为1,连接△A1B1C1三边中点得到第二个△A2B2C2,再顺次连接△A2B2C2三边中点得△A3B3C3,照此下去可得第2009个三角形,则第2009个三角形的面积是
 

查看答案和解析>>


同步练习册答案