在下面的点子图上画一个直角三角形和一个锐角三角形.使它们的底是3厘米.高是4厘米. 查看更多

 

题目列表(包括答案和解析)

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,AD∥BC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>

某班研究性学习小组在研究用一条直线等分几何图形的面积时,发现如下事实:
㈠如图①,对于三角形ABC,取BC边中点D,过A、D两点画一条直线即可.
理由:∵△ABD与△ADC等底等高,
∴S△ABD=S△ADC
㈡如图②,对于平行四边形ABCD,连接两对角线AC、BD交于点O,过O点任作一直线MN即可.(不妨设与AD、BC分别交于点M、N)
理由:∵四边形ABCD是平行四边形,
∴AO=CO,ADBC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四边形ABNM=S四边形CDMN
受上面的启发,请你研究一下下面的问题:
某村王大爷家有一块梯形形状的稻田(如图③所示),已知:上底AD=40米,下底BC=60米,高h=30米,王大爷准备把这块梯形形状的稻田平均分给两个儿子(面积相等).
(1)分割方法有许多种,请你帮助王大爷设计两种不同的分割方案,在图③、图④中分别画出来,并说明理由;
(2)为了尽可能减少筑砌分割田坎的劳动量(只考虑田坎长度对工时的影响,不计其它因素),问:田坎应砌在什么位置最短?请画出图形,并求出此时分割线的长度.

查看答案和解析>>

阅读下列材料:

在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

小明的做法:当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.

小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.

进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.

解决下列问题:

(1)正方形FGCH的面积是________;(用含ab的式子表示)

(2)类比图1的剪拼方法,请你就图2的三种情形分别画出剪拼成一个新正方形的示意图.

查看答案和解析>>

阅读下列材料:
在图1-图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
小明的做法:当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
解决下列问题:
(1)正方形FGCH的面积是
 
;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.精英家教网

查看答案和解析>>

阅读下列材料:
在图1-图4中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
小明的做法:当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
解决下列问题:
(1)正方形FGCH的面积是______;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.

查看答案和解析>>


同步练习册答案