已知:△ABC中.AB=AC.点P是底边的中点.PD⊥AB.PE⊥AC.垂足分别是D.E.求证:PD=PE. [能力巩固] 查看更多

 

题目列表(包括答案和解析)

如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.

查看答案和解析>>

如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.

查看答案和解析>>

如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.

查看答案和解析>>

已知:等腰三角形ABC的两腰AC和BC长为5厘米,底边AB长为6厘米,如图,现有一长为1厘米的线段MN在△ABC的底边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)t=
2
2
时,Q点与C重合;此时PM=
8
3
8
3
厘米;
(2)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(3)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求P、Q两点都在AC边上时四边形MNQP的面积S随运动时间t变化的函数关系式;
(4)简要说明从运动开始到终止四边形MNQP的面积S是如何变化的.

查看答案和解析>>

已知:如下图,在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,交AD于H点。在底边BC保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积S△ABC·S△HBC的值是否随着变化?请说明你的理由。

查看答案和解析>>


同步练习册答案