如图有5×3个点.取不同的三个点就可以组合一个三角形.问可以组成____个三角形. 解:如下图.任选三点有=455种选法.其中三点共线的有3+5+4×2=30+5+8=43.所以.可以组成三角形455-43=412. 查看更多

 

题目列表(包括答案和解析)

(1)由二十边形的一个顶点能画出多少条对角线?

(观察教村第54页图8.3.4,这一问题一定很容易解决,right?)

(2)四边形,五边形,…,n边形,各有多少条对角线?

(这一问题不大好解决.请与同伴讨论,试试看,相信你能行!)

(3)对角线如不相交,在五边形、六边形、七边形内分别最多能画出几条对角线?

(4)图中的多边形ABCDEF,可以用3条对角线AC、AD与DF分成三角形.试找出其他两种用3条对角线将它分割成三角形的不同方法.

(5)图中的七边形则是被4条对角线分割成三角形.你还能找出多少种其他的方法?

有一种方法可以很清楚地记录不同的分割方法,那就是依次计算各顶点处的三角形数目.上图的分割方法可以记录为:

1  4  1  3  1  3  2

它们的和(不论自哪个顶点开始,不论是顺时针或逆时针方向,都会得到相同的数字):

1+4+1+3+1+3+2=15.

以不同方式分割七边形是否会得到相同的数字?它们的和呢?

请解释你的结果.

取不同边数的多边形,并记录不同的分割方法;然后试试自己是否不用绘图就预测出十边形会有多少种不同的分割方法.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.

材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).

材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).

编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.

材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).

材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).

编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

查看答案和解析>>

外交是内政的外延,它牵涉到国家的安全与国家的生存。现今世界连成一体,成功的外交能把本国很好地融入到这个整体中,从而使自身的形象和利益最大化。
下列材料反映了中国百年来外交的风雨历程,请结合材料和所学知识回答问题。
材料一:1793年英国马嘠尔尼使团来华,乾隆皇帝颁布上谕,宣称:“各处藩封到天朝进贡观光者,不特陪臣俱行三跪九叩之礼,即皇王亲王至,亦同此礼,今尔国王遣尔(指马嘠尔尼)前来祝嘏(福),自应遵天朝法度,免失尔国王祝厘纳贡之诚。”
——摘编自徐中约《中国近代史:1600—2000中国的奋斗》
材料二:鸦片战争后开放的通商口岸(如图)

材料三:新中国成立以来,在外交方面取得了辉煌的成就。截止2008年底,中国与171个国家建立了外交关系,共参加了130多个政府间国际组织,缔结了近20000项双边条约,参加了300多个多边条约,参加了24项联合国维和行动,派出维和官兵11063人次。                            ——摘自中国外交部编《中国外交》(2009年版)
材料四:进入新的世纪,中国以前所未有的深度和广度,参与到反恐、防扩散、应对气候变化等全球性问题的讨论和解决中,人们越来越频繁地使用“负责任的大国”来界定中国在国际上的角色。 
材料五:温家宝总理说:“我们要走一条和一些大国不一样的道路,这条道路就是和平崛起的道路。这是中国在总结世界和中国社会发展的历史和根据中国的现实情况作出的理性选择。”                                                           ——新华网
请回答:
(1)依据材料一指出当时清朝统治者的对外态度。(2分)
(2)依据材料二及所学知识指出我国当时的外交特点及其原因。(6分)  
(3)依据材料三及所学知识概括新中国外交的基本特点及其形成的主要原因。(6分)
(4)结合材料四及所学知识,举例说明改革开放以来中国成为国际社会“负责任大国”的主要外交活动。(4分,举两例即可)    
(5)坚持走和平发展道路与构建和谐世界是中国外交战略思想的发展与创新。请结合材料五及所学知识分析中国为什么要走和平崛起的道路?(8分)
(6)纵观中国百年来外交的风雨历程,你可得到什么认识或启示?(4分)

查看答案和解析>>


同步练习册答案