如图.若∠1=∠D,则根据 可得 ∥ , 若∠4=∠ .则根据 可得 ∥ , 若AF∥BD.则根据 可得∠2=∠ . 根据 可得∠A+∠ =180°, 2. 直线a.b.c.d如图所示.若∠1=117°.∠2=117° ∠3=130°.求∠4的度数, 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,ABOC,点A的坐标为(0,8),点C的坐标为(10,0),OBOC.点PC点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点PPHOB,垂足为H.

      (1)求点B的坐标;

      (2)设△HBP的面积为SS≠0),点P的运动时间为t秒,求St之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;

(3)分别以PH为圆心,PCHB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.

【解析】(1)根据已知得出OB=OC=10,BN=OA=8,即可得出B点的坐标;

(2)利用△BON∽△POH,得出对应线段成比例,即可得出S与t之间的函数关系式;从而求出△HBP的最大面积;

(3)若⊙P和⊙H两圆外切 ,则须HB+PC=HP,从而求解

 

查看答案和解析>>

如图1,在RtABC中,∠C90°,∠A30°,∠B60°.若BC1,则根据在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半以及勾股定理容易得到AB________AC________.因此,含30°角的直角三角形三边(从小到大)之比为________;同样,如图2,含45°角的直角三角形三边(从小到大)之比为________.这样结合三角函数的定义可以推导得到30°、45°、60°角的三角函数值.

查看答案和解析>>

如图,若∠1+∠2+∠3+∠4=180°,可得直线________和________平行,根据是________;若使ABCD,则需要有________条件成立.

查看答案和解析>>

如图,在△ABC和△DEF中,∠A=∠D,AC=DF,若添加条件________=________或________∥________,可根据角边角条件说明△ABC≌△DEF;若添加条件________=________或________∥________,则可根据角角边条件得到△ABC≌△DEF;若添加条件________=________,则可根据边角边条件,得到△ABC≌△DEF

查看答案和解析>>

阅读理解:对于任意正实数a、b,∵≥0,∴≥0,

,只有当a=b时,等号成立.

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值

(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。

设镜框的一边长为m(m>0),另一边的为,考虑何时时周长最小。

∵m>0, (定值),由以上结论可得:

只有当m=       时,镜框周长有最小值是       

(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.

 

查看答案和解析>>


同步练习册答案