我们知道.|a|表示数a到原点的距离.这是绝对值的几何意义.进一步地.数轴上两个点A.B.分别用a.b表示.那么AB=|a-b|..利用此结论.回答以下问题: (1)数轴上表示2和5 的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 , (2) 数轴上表示x和-1的两点A.B之间的距离是 , 如果|AB|=2.那么x的值为 ; (3)说出|x+1|+|x+2|表示的几何意义 ,当x取何值时.该式取值最小: . (4)求|x-1|+|x-2|+|x-3|+-+|x-2009|的最小值. 查看更多

 

题目列表(包括答案和解析)

我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

 这个结论可以推广为表示在数轴上对应点之间的距离;

例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2

例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3

例3:解方程。由绝对值的几何意义知,该方程表示求在数轴上与1

和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3

参考阅读材料,解答下列问题:

(1)方程的解为                     

(2)解不等式≥9;

(3)若≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

阅读下列材料:

  我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为表示在数轴上对应点之间的距离;

例1 解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2

例2 解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3

例3 解方程。由绝对值的几何意义知,该方程表示求在数轴上与1

和-2的距离之和为5的点对应的x的值。在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3

参考阅读材料,解答下列问题:

(1)方程的解为          

(2)解不等式≥9;

(3)若≤a对任意的x都成立,求a的取值范围.

查看答案和解析>>

我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A.B两点之间的距离为AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:
(1)数轴上表示2和5的两点之间的距离是
3
3
,数轴上表示-2和-5的两点之间的距离是
3
3
,数轴上表示1和-3的两点之间的距离是
4
4

(2)数轴上表示x和-1的两点A.B之间的距离是
|x+1|
|x+1|
,如果|AB|=2,那么x的值为
1或-3
1或-3

(3)说出|x+1|+|x+2|表示的几何意义
数轴上表示的点x到-1和-2两点的距离和
数轴上表示的点x到-1和-2两点的距离和
,该式取的最小值是:
1
1

查看答案和解析>>

18、我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离;
例1解方程|x|=2,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2解不等式|x-1|>2,如图,在数轴上找出|x-1|>2的解,即到1的距离为2的点对应的数为-1、3,则|x-1|>2的解为x<-1或X>3

参考阅读材料,解答下列问题:
不等式|x+3|>4的解为
x<-7或x>1

查看答案和解析>>

我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离;
例1解方程|x|=2,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2解不等式|x-1|>2,如图,在数轴上找出|x-1|>2的解,即到1的距离为2的点对应的数为-1、3,则|x-1|>2的解为x<-1或X>3

参考阅读材料,解答下列问题:
不等式|x+3|>4的解为   

查看答案和解析>>


同步练习册答案