题目列表(包括答案和解析)
在平面直角坐标系中,有一个矩形ABCD,四个顶点的坐标分别为:A(4,0)、B(4,2)、C(8,2)、D(8,0),并且有两个动点P和Q。P从原点O出发,沿X轴正方向运动;Q从A点出发,沿折线A—B—C—D方向在矩形的边上运动,且两点的运动速度均为每秒2个单位。当Q到达D点时,P也随之停止。设运动的时间为x。
(1)分别求出当x=1和x=3时,对应的△OPQ的面积。
(2)设△OPQ的面积为y,分别求出不同时段,y关于x的函数解析式,注明自变量的取值范围。并求出在整个运动过程中,△OPQ的面积的最大值。
(3)在P、Q运动过程中,是否存在两个时刻
和
,使得构成相应的
和
相似。若存在,直接写出这两个时刻,并证明两个三角形相似;若不存在,请说明理由。
![]()
问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。
问题探究:(1)在旋转过程中,
①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。
②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。
③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)
(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。![]()
图1 图2 图3
如图:抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2。
![]()
(1)求A、B两点的坐标及直线AC的函数解析式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com