2 坐标方法的简单应用 5分钟训练(预习类训练.可用于课前) 查看更多

 

题目列表(包括答案和解析)

  我们知道,含有两个未知数的一个方程,一般情况下有无穷多个解.有时为了需要,要求出方程的整数解,如何将这些解一一写出呢?可以试用下面的一种简单办法.例如,求方程3x+95y=1306的整数解.

  解:由原方程得,x=.   ①

  因为x,y为整数,=435-32y+,故y=3k+2.(k为整数) ②

  把②代入①,得x=372—95k,因此(k为整数)

  又如求方程68x-9y=102的整数解.

  解:由原方程得y=.  ①

  因为x,y为整数,而-102被9除余-3,又68x=63x+5x,故5x被9除余3,x=9k+6.(k为整数)     ②

  把②代入①,得y=68k+34,因此(k为整数)

  注意:对于二元一次不定方程ax±by=c(a,b是互质的正整数,c是整数),当a,b中有一个较小时,可从考虑余数着手,求得其整数解.

  下面,请你应用上述方法解两个问题:

(1)

求方程3x-5y=6的整数解

(2)

求方程3x-4y=25的整数解

查看答案和解析>>

阅读下列材料,并解答相应问题:

对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:

x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2

=(x+a)2﹣(2a)2

=(x+2a+a)(x+a﹣2a)

=(x+3a)(x﹣a).

(1)像上面这样把二次三项式分解因式的数学方法是.     

(2)这种方法的关键是.     

(3)用上述方法把m2﹣6m+8分解因式.

 

查看答案和解析>>

阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+2a+a)(x+a﹣2a)
=(x+3a)(x﹣a).
(1)像上面这样把二次三项式分解因式的数学方法是.     
(2)这种方法的关键是.     
(3)用上述方法把m2﹣6m+8分解因式.

查看答案和解析>>

阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+2a+a)(x+a﹣2a)
=(x+3a)(x﹣a).
(1)像上面这样把二次三项式分解因式的数学方法是.     
(2)这种方法的关键是.     
(3)用上述方法把m2﹣6m+8分解因式.

查看答案和解析>>

将某班50名学生的数学成绩按照学号顺序排列如下:

88 86 85 76 79 92 89 84 93 75

80 87 60 78 76 89 81 88 73 80

94 96 80 76 68 89 74 90 70 55

50 80 77 90 93 67 86 90 92 100

88 74 87 92 88 92 89 82 67 91

请用简单的随机抽样的方法选取两个样本,一个样本含有6个个体,另一个样本含有10个个体.

第一个样本

第二个样本

查看答案和解析>>


同步练习册答案