不等式组的解集是 . 解析:解这个不等式组得找出它们的公共部分即可. 答案:1<x<4 查看更多

 

题目列表(包括答案和解析)

(1)计算:数学公式
(2)解不等式组数学公式,并把它的解集在数轴上表示出来.
(3)解方程:数学公式
(4)为了了解某校初三年级200名学生的数学毕业考试成绩,从中抽取了20名学生的数学成绩进行分析,下面是根据这20名学生的数学成绩画出的频率分布直方图,根据题中给出的条件回答下列问题:
①在这次抽样分析的过程中,样本容量是______
②71.5-76.5(分)这一小组的频率是______;
③在这次毕业考试中,该校初三年级200名学生的数学成绩在86.5-96.5(分)这个范围内的人数约为______人.

查看答案和解析>>

(1)计算:
(2)解不等式组,并把它的解集在数轴上表示出来.
(3)解方程:
(4)为了了解某校初三年级200名学生的数学毕业考试成绩,从中抽取了20名学生的数学成绩进行分析,下面是根据这20名学生的数学成绩画出的频率分布直方图,根据题中给出的条件回答下列问题:
①在这次抽样分析的过程中,样本容量是______
②71.5-76.5(分)这一小组的频率是______;
③在这次毕业考试中,该校初三年级200名学生的数学成绩在86.5-96.5(分)这个范围内的人数约为______人.

查看答案和解析>>

阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得数学公式 ①或 数学公式
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时)305070
刹车距离S(米)61528
问该车是否超速行驶?

查看答案和解析>>

阅读理解下列例题:
例题:解一元二次不等式x2-2x-3<0.
分析:求解一元二次不等式时,应把它转化成一元一次不等式组求解.
解:把二次三项式x2-2x-3分解因式,得:x2-2x-3=(x-1)2-4=(x-3)(x+1),又x2-2x-3<0,
∴(x-3)(x+1)<0.
由“两实数相乘,同号得正,异号得负”,得 ①或  ②
由①,得不等式组无解;由②,得-1<x<3.
∴(x-3)(x+1)<0的解集是-1<x<3.
∴原不等式的解集是-1<x<3.
(1)仿照上面的解法解不等式x2+4x-12>0.
(2)汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素.某车行驶在一个限速为40千米/时的弯道上,突然发现异常,马上刹车,但是还是与前面的车发生了追尾,事故后现场测得此车的刹车距离略超过10米,我们知道此款车型的刹车距离S(米)与车速x(千米/时)满足函数关系:S=ax2+bx,且刹车距离S(米)与车速x(千米/时)的对应值表如下:
车速x(千米/时)305070
刹车距离S(米)61528
问该车是否超速行驶?

查看答案和解析>>

(1)计算:(1+
1
x-1
x
x2-1

(2)解不等式组
x-2(x-1)≤3
2x+5
3
>x
,并把它的解集在数轴上表示出来.
(3)解方程:(
x
x-1
)2+6=5(
x
x-1
)

(4)为了了解某校初三年级200名学生的数学毕业考试成绩,从中抽取了20名学生的数学成绩进行分析,下面是根据这20名学生的数学成绩画出的频率分布直方图,根据题中给出的条件回答下列问题:
①在这次抽样分析的过程中,样本容量是______
②71.5-76.5(分)这一小组的频率是______;
③在这次毕业考试中,该校初三年级200名学生的数学成绩在86.5-96.5(分)这个范围内的人数约为______人.

查看答案和解析>>


同步练习册答案