9 8.180°-n 90°-n 9.> 查看更多

 

题目列表(包括答案和解析)

解:(1)由抛物线C1得顶点P的坐标为(2,5)………….1分

∵点A(-1,0)在抛物线C1上∴.………………2分

(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..

∵点P、M关于点A成中心对称,

∴PM过点A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴顶点M的坐标为(,5).………………………3分

∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到

∴抛物线C3的表达式.  …………4分

(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到

∴顶点N、P关于点Q成中心对称.

 由(2)得点N的纵坐标为5.

设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.

∵旋转中心Q在x轴上,

∴EF=AB=2AH=6.

 ∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).

根据勾股定理,得

     

  

       

①当∠PNE=90º时,PN2+ NE2=PE2

解得m=,∴N点坐标为(,5)

②当∠PEN=90º时,PE2+ NE2=PN2

解得m=,∴N点坐标为(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

直线CD经过∠BCA的顶点CCA=CBE、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:

①如图,若∠BCA=90°,∠α=90°,则EF________|BE-AF|(填“>”,“<”或“=”号);

②如图,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是________

(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.

查看答案和解析>>

CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:

①如图1,若∠BCA=90°,∠α=90°,

则BE________CF;EF________|BE-AF|(填“>”,“<”或“=”);

②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立.

(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>


同步练习册答案