题目列表(包括答案和解析)
解:(1)由抛物线C1:
得顶点P的坐标为(2,5)………….1分
∵点A(-1,0)在抛物线C1上∴
.………………2分
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(
,5).………………………3分
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到
∴抛物线C3的表达式
. …………4分
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称.
由(2)得点N的纵坐标为5.
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6.
∴EG=3,点E坐标为(
,0),H坐标为(2,0),R坐标为(m,-5).
根据勾股定理,得
①当∠PNE=90º时,PN2+ NE2=PE2,
解得m=
,∴N点坐标为(
,5)
②当∠PEN=90º时,PE2+ NE2=PN2,
解得m=
,∴N点坐标为(
,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
综上所得,当N点坐标为(
,5)或(
,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分
直线CD经过∠BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图,若∠BCA=90°,∠α=90°,则EF________|BE-AF|(填“>”,“<”或“=”号);
![]()
②如图,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是________;
![]()
(2)如图,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
![]()
CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE________CF;EF________|BE-AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com