模拟在线11.我们知道.“两点之间线段最短 .“直线外一点与直线上各点连接的所有线段中.垂直段最短 .在此基础上.人们定义了点到点的距离.点到直线的距离.类似地.若点P是O外一点.则点P与O的距离应定义为( ) 图5-40 A.线段PO的长度 B.线段PA的长度 C.线段PB的长度 D.线段PC的长度 答案:B 查看更多

 

题目列表(包括答案和解析)

(2011•宣城模拟)我们知道连接三角形两边中点的线段叫做三角形的中位线;通过证明可以得到“三角形的中位线平行于三角形的第三边,且等于第三边的一半”类似三角形中位线,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图在梯形ABCD中,AD∥BC,点E,F分别是AB、CD的中点,观察EF的位置,联想三角形中位线的性质,你能发现梯形的中位线有什么性质?证明你的结论.
(2)如果点E分线段AB为
AE
EB
=
1
3
,EF∥BC交CD于F,AD=3,BC=5,请你利用第(1)的结论求出EF=
3.5
3.5
(直接填写结果);
(3)如果点E分线段AB为
AE
EB
=
m
n
,EF∥BC交CD 于F,AD=a,BC=b,求EF的长.

查看答案和解析>>

我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.

(1)图B可以解释的代数恒等式是
(2n)2=4n2
(2n)2=4n2

(2)现有足够多的正方形和矩形卡片,如图C:
①若要拼出一个面积为(a+2b)(a+b)的矩形,则需要1号卡片
1
1
张,2号卡片
2
2
张,3号卡片
3
3
张;
②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为2a2+5ab+2b2,并利用你画的图形面积对2a2+5ab+2b2进行因式分解.

查看答案和解析>>

通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=
底边
=
BC
AB
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=
1
1

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知cosA=
4
5
,其中∠A为锐角,试求sanA的值.

查看答案和解析>>

(2012•上海模拟)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a-2)
2
+b+3=0
,其中a、b为有理数,那么a=
2
2
,b=
-3
-3

(2)如果(2+
2
)a-(1-
2
)b=5
,其中a、b为有理数,求a+2b的值.

查看答案和解析>>

应用规律,解决问题
(1).定义:a为不等于1的有理数,我们把
1
1-a
称为a的差倒数,如:2的差倒数是
1
1-2
=
1
-1
=-1
,-1的差倒数是
1
1-(-1)
=
1
2
,已知a1=-
1
3

①a2是a1的差倒数,则a2=
3
4
3
4

②a3是a2的差倒数,则a3=
4
4

③a4是a3的差倒数,则a4=
-
1
3
-
1
3

④以此类推,a2011=
-
1
3
-
1
3

(2).我们知道:
1
2
×
2
3
=
1
3
1
2
×
2
3
×
3
4
=
1
4
,…,
1
2
×
2
3
×
3
4
×
…×
n
n+1
=
1
n+1
,试根据上面规律,
计算:(
1
19
-1)(
1
20
-1)(
1
21
-1)
(
1
2011
-1)

查看答案和解析>>


同步练习册答案