如图.同一平面内2条直线相交.只有1个交点.3条直线两两相交最多有3个交点.4条直线两两相交最多有 条交战.5条直线两两相交.最多有 个交点.请你猜想下.10条直线两两相交.最多有多少个交点? 查看更多

 

题目列表(包括答案和解析)

24、已知:如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,
且∠1=∠2.
求证:AD平分∠BAC,填写“分析”和“证明”中的空白.
分析:要证明AD平分∠BAC,
只要证明∠
BAD
=∠
CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,
由已知AD⊥BC、EF⊥BC可推出
AD
EF
,这时可以得到∠1=
∠BAD
,∠2=
∠CAD

从而不难得到结论AD平分∠BAC,.
证明:∵AD⊥BC,EF⊥BC(已知)
AD
EF
同一平面内,垂直于同一条直线的两条直线平行

∠1
=
∠BAD
(两直线平行,内错角相等.)
∠2
=
∠DAC
(两直线平行,同位角相等.)
∠1=∠2
(已知)
∠BAD=∠DAC

即AD平分∠BAC(
角平分线的性质

查看答案和解析>>

57、(合作探究题)在同一平面内三条直线交点有多少个?
甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.
乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.
以上说法谁对谁错?为什么?

查看答案和解析>>

(合作探究题)在同一平面内三条直线交点有多少个?
甲:同一平面三直线相交交点的个数为0个,因为abc,如图(1)所示.
乙:同一平面内三条直线交点个数只有1个,因为a,b,c
精英家教网
交于同一点O,如图(2)所示.
以上说法谁对谁错?为什么?

查看答案和解析>>

23、已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明
∠BAD
=
∠CAD

而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出
EF
AD
,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面内,垂直与同一直线的两直线平行

∠1
=
∠BAD
(两直线平行,内错角相等),
∠2
=
∠CAD
(两直线平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分线的定义

查看答案和解析>>

(1)解方程:数学公式
(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)

(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有______个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有______个交点.由此我们可以猜想:在同一平面内,6条直线最多可有______个交点,n( n为大于1的整数)条直线最多可有______个交点(用含n的代数式表示)

查看答案和解析>>


同步练习册答案