如图,正方形EFGH是由正方形ABCD平移 得到的, 则有 ( ) A. 点E和B对应 B. 线段AD和EH对应 C. 线段AC和FH对应 D. ∠B和∠D对应 查看更多

 

题目列表(包括答案和解析)

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)
⑴、由图⑴易知,
①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         
⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。
⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,
①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.
②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)

⑴、由图⑴易知,

①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         

⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。

⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,

①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.

②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

 

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)
⑴、由图⑴易知,
①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         
⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。
⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,
①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.
②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

查看答案和解析>>

如图所示,正方形EFGH是由正方形ABCD平移得到的,则有

[  ]

A.点E和B对应

B.线段AD和EH对应

C.线段AC和FH对应

D.∠B和∠D对应

查看答案和解析>>

25、图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>


同步练习册答案