当直线通过等腰三角形的顶点时.有如左图的两个解: 顶角:. 查看更多

 

题目列表(包括答案和解析)

四边形ABCD是正方形,AC交BD于点O.直角三角尺的一条直角边始终垂直于AD,垂足为F,且直角顶点P在直线BD上滑动(点P不与B、D重合),另一直角边交AB于点E.
(1)当点P与点O重合时,通过观察与测量,猜想△OEF的形状是
等腰直角三角形
等腰直角三角形

(2)如图1,当点P为BD上任意一点时,猜想△OEF的形状是
等腰直角三角形
等腰直角三角形
.并证明你的结论.
(3)如图2,当点P为BD延长线上一点时,且直角三角尺的一条直角边与DA的延长线交于点F时,猜想此时△OEF的形状,不需要说明理由.

查看答案和解析>>

如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)△ABE与△DCA是否相似?请加以说明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.
(3)当BE=CD时,分别求出线段BD、CE、DE的长,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案