函数中自变量x的取值范围是 . 平时 期中 期末 84 90 87 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,∠B与∠C的平分线交于点P,设∠A=x°,BPC=y°,当∠A变化时,求yx之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围。

 

查看答案和解析>>

如图,在△ABC中,∠B、∠C的平分线交于点P,设∠A=x,∠BPC=y,当∠A变化的时,求y与x之间的函数关系式,并判断y是否是x的一次函数,指出自变量x的取值范围。

查看答案和解析>>

某广告公司设计一幅周长为12m 的矩形广告牌,广告设计费为每平方米1000 元,设矩形的一边为xm ,面积为Sm2
(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;
(2)请你设计一个方案,使获得的设计费最多,并求出这个费用;
(3)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)
参考资料:①当矩形长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形;
≈2.236。

查看答案和解析>>

在北方冬季,对某校一间坐满学生、门窗关闭的教室中CO2的总量进行检测,部分数据如下:

经研究发现,该教室空气中CO2总量y(m3)是教室连续使用时间x(分)的一次函数。
(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)根据有关资料推算,当该教室空气中CO2总量达到6.7m3时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适;
(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO2的总量减少到0.1m3,求开门通风时教室空气中CO2平均每分钟减少多少立方米?

查看答案和解析>>

某工厂准备加工一批形状如下图所示的矩形窗子,其窗框用铝合金材料做成,窗框的内部安装透明玻璃,每个窗框的周长均为5米,设一边长为x米,做成的窗框的透光面积为y米2
(1)请写出y与x的函数关系式,并写出自变量x的取值范围; 
(2)根据(1)中的函数关系式分别计算:①当x=1时,窗框的透光面积是多少?②当x为何值时,窗框的透光面积最大?最大面积是多少? 
(3)现该工厂准备按(2)中的两种不同透光面积加工矩形窗子共计60个(其中透光面积最大的窗子不少于48个)。已知铝合金每米的材料费为25元,玻璃每平方米的材料费为32元,现计划用不多于10480元的资金购买材料来加工矩形窗子,那么共有哪几种加工窗子的方案?

查看答案和解析>>


同步练习册答案