如图.以Rt△ABC的直角边AC.BC向形外作正方形ACGH.正方形CBEF.连结GE.AE. 求证:EC垂直平分AG. 查看更多

 

题目列表(包括答案和解析)

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=
 
,点Q到AC的距离是
 

(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由精英家教网
(4)当DE经过点C时,请直接写出t的值.

查看答案和解析>>

如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P在AB上AP=2.点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后以原速度沿AB向点B运动.点F运动到点B时停止.点E也随之停止运动.在点E、F运动过程中.以EF为边作正方形 EFGH,使它与△ABC在线段AB的同侧,设点E、F运动的时间为t秒(t>0),正方形 EFGH它与△ABC重叠部分的面积为S.
(1)写出AC、BC的长;
(2)当t=1时,正方形 EFGH的边长是
2
2
,当t=3时,正方形 EFGH的边长为
4
4

(3)当0<t≤2时,求S与t的函数关系式.
(4)直接写出,在整个运动过程中,当正方形 EFGH它与△ABC重叠部分是直角梯形时t的取值范围.

查看答案和解析>>

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=
1
1
,点Q到AC的距离是
8
5
8
5

(2)在点P从C向A运动的过程中,将△APQ的面积S用关于t的代数式来表示;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t所有可能的值;若不能,请说明理由.

查看答案和解析>>

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点E运动到点B时停止,点F也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分的面积为S.
(1)当点E由P向A运动过程中,请求出点H恰好落在AC边上时,t的值;
(2)当0<t≤2时,求S与t的函数关系式;
(3)设AC的中点为N,是否存在这样的t,使△NEF为等腰三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

 如图,在Rt△ABC中,∠C=90°,AC= 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着PQ的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点PQ同时出发,当点Q到达点B时停止运动,点P也随之停止.设点PQ运动的时间是t秒(t>0)。

1.(1)(2分) 当t = 2时,AP =      ,点QAC的距离是     

2.(2)(2+2分)在点PCA运动的过程中,求△APQ的面积St的函数关系式;并求出S的最大值。

3.(3)(4分)在点EBC运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;

4.(4)(2分)当DE经过点时,请求出t的值.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案