作图.作出线段AB的一个黄金分割点(要求:用铅笔和尺规作图.并保留作图痕迹.不要求写作法) 查看更多

 

题目列表(包括答案和解析)

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.

查看答案和解析>>

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.

已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);

要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.

(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.

要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

解:在表格中作答

分割图形

      分割或图形说明

示例

示例①分割成两个菱形。

②两个菱形的边长都为a,锐角都为60°。

 

 

 

查看答案和解析>>

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.
(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
分割图形      分割或图形说明
示例:
示例:
①分割成两个菱形.
②两个菱形的边长都为a,锐角都为60°.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

查看答案和解析>>

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
分割图形
     分割或图形说明
示例

示例①分割成两个菱形。
②两个菱形的边长都为a,锐角都为60°。

 

 

查看答案和解析>>

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见表格里的示例);

要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.

(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.

要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

查看答案和解析>>


同步练习册答案