题目列表(包括答案和解析)
如图,已知AB=DC,AC=DB,BE=CE.
求证:AE=DE.
如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.
![]()
如图,已知:AB=AC,DB=DC,E是AD上的一点,试判断线段BE,CE之间有怎样的大小关系,请写出你的猜想,并给出证明.
已知:在四边形ABCD中,AB=DC,AC=DB,AD≠BC。求证:四边形ABCD是等腰梯形。
下面是某同学证明这道题的过程:
![]()
证明:过D作DE∥AB,交BC于E,如图19-3-10所示,则∠ABC=∠1。①
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB,②
∴∠ABC=∠DCB,③
∴∠1=∠DCB,④
∴AB=DC=DE,⑤
∴四边形ABED是平行四边形,⑥
∴AD∥BC,⑦
BE=AD,⑧
又∵AD≠BC,∴BE≠B,
∴点E,C是不同的点,DC不平行于AB。⑨
∵AB=DC,
∴四边形ABCD是等腰梯形。⑩
阅读后填空:
(1)上面的证明过程是否有错误?如有,错在第几步?答:_________;
(2)作DE∥AB的目的是__________;
(3)有人认为第⑨步是多余的,你认为它是否多余?为什么?_________;
(4)判断四边形ABED是平行四边形的依据为___________;
(5)判断四这形ABCD是等腰梯形的依据为_____________;
(6)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?
答:_________________。
课外兴趣小组活动时,老师提出了如下问题:
如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF.
①求证:BE+CF>EF
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.
(3)问题拓展:
如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com