三角形内.外角平分线定理: 内角平分线定理:如图:如果∠1=∠2.则有 外角平分线定理:如图.AD是△ABC中∠A的外角平分线交BC的延长线与D. 则有 查看更多

 

题目列表(包括答案和解析)

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.
分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.

证法1:如图2,延长BC到D,过点C画CE∥BA
∵BA∥CE(作图所知)
∴∠B=
∠1
∠1
(两直线平行,同位角相等),
∠A=∠2  (
两直线平行,内错角相等
两直线平行,内错角相等
 ).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换)
(1)请补全上述证明过程.
(2)如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB,这种添加辅助线的方法也能证明∠A+∠B+∠C=180°.请完成说理过程.
证法2:如图3,过线段BC上任一点F(点B、C除外),画FH∥AC,FG∥AB.

查看答案和解析>>

某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.

(1)如图1,△ABC两内角∠ABC与∠ACB的平分线交于点E.则∠BEC=90°+
1
2
∠A.
(阅读下面证明过程,并填空.)
证明:∵BE、CE分别平分∠ABC和∠ACB,
∴∠EBC=
1
2
∠ABC,∠ECB=
1
2
∠ACB(角平分线的定义)
∴∠BEC=180°-(∠EBC+∠ECB)(
三角形内角和定理
三角形内角和定理

=180°-(
1
2
∠ABC+
1
2
∠ACB
)=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=
180°-90°+
1
2
∠A
180°-90°+
1
2
∠A
=90°+
1
2
∠A

(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E.
请你写出∠BEC与∠A的数量关系,并证明.
答:∠BEC与∠A的数量关系式:
∠BEC=
1
2
∠A
∠BEC=
1
2
∠A

证明:
如下
如下

(3)如图3,△ABC的两外角∠CBD与∠BCF的平分线交于点E,请你直接写出∠BEC与∠A的数量关系,不需证明.

查看答案和解析>>

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?  (填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为  
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为______.
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为______.
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>


同步练习册答案