17.已知等腰三角形的一个底角的正切值为2.底边上的高线长为2.则此等腰三角形的腰长为 A.2 B. C.4 D. 查看更多

 

题目列表(包括答案和解析)

22、我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立,若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>

我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”很易得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:
(1)如果一个三角形一边的中线和这边上的高相互重合,则这个三角形是等腰三角形;
(2)如果一个三角形一边的高和这边所对的角的平分线相互重合,则这个三角形是等腰三角形;
(3)如果一个三角形一边的中线和这边所对的角的平分线相互重合,则这个三角形是等腰三角形.
我们运用线段垂直平分线的性质,很易证明猜想(1)的正确性.现请你帮助小明判断他的猜想(2)、(3)是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.

查看答案和解析>>


同步练习册答案