E 如右图,E坐在A.B之间. 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OA精英家教网PB重叠部分图形的周长为l.
(1)求A1、P1两点的坐标(用含m的式子表示);
(2)求周长L与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以P精英家教网Q为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标;
(2)分别求当t=1,t=5时,线段PQ的长;
(3)求S与t之间的函数关系式;
(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.

查看答案和解析>>

如图①,在平面直角坐标系中,点A从点(1,0)出发以每秒1个单位长度的速度沿x轴向右运动,在运动过程中,以OA为一边作菱形OABC,使B、C在第一象限,且∠AOC=60°,连接AC、OB;同时点M从原点O出发,以每秒
3
个单位长度的速度沿对角线OB向点B运动,若以点M为圆心,MA的长为半径画圆,设运动时间为t秒.
(1)当t=1时,判断点O与⊙M的位置关系,并说明理由.
(2)当⊙M与OC边相切时,求t的值.
(3)随着t的变化,⊙M和菱形OABC四边的公共点个数也在变化,请直接写出公共点个数与t的大小之间的对应关系.

查看答案和解析>>

如图,在平面直角坐标系中,抛物线y=-x2+2x+c与y铀交于点D(0,3)。
(1)直接写出c的值。
(2)若抛物线与x轴交于A、B两点(点B在点A的右侧),顶点为C点,求直线BC的解析式。
(3)已知点P是直线BC上运动时的一个动点。    
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥y轴,垂足为 E,连接BE。设点P的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;    
②试探索:在直线BC上是否存在点P,使得以点P为圆心、r为半径的⊙P,既与抛物线的对称轴相切,又与以点 C为圆心、1为半径的⊙C外切?如果存在,试求r的值,并直接写出点P的坐标;如果不存在,请说明理由。
[提示:二次函数y=ax2+bx+c的顶点坐标为]

查看答案和解析>>

如图,在平面直角坐标中,点A的坐标为(1,1),OA=AC,∠OAC=90°,点D为x轴上一动点.以AD为边在AD的右侧作正方形ADEF.
(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为     ;位置关系为       
(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例;
(3)设D点坐标为(t,0),当D点从O点运动到C点时,用含t的代数式表示E点坐标,并直接写出E点所经过的路径长.

查看答案和解析>>


同步练习册答案