如图:AB=DC.AC=BD.则图中的全等三角形有( )对 A.1 B.2 C.4 D.3 查看更多

 

题目列表(包括答案和解析)

为了测量一池塘的两端A,B之间的距离,同学们想出了如下的两种方案:

①如图1,先在平地上取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至点D,BC至点E,使DC=AC,EC=BC,最后量出DE的距离就是AB的长;
②如图2,过点B作AB的垂线BF,在BF上取C,D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即是AB的距离.
问:
(1)方案①是否可行?
可行
可行
,理由是
SAS可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED
SAS可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED

(2)方案②是否可行?
可行
可行
,理由是
ASA可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED
ASA可证明△ACB≌△DCE,再根据全等三角形的性质可得AB=ED

(3)小明说在方案②中,并不一定需要BF⊥AB,DE⊥BF,只需要
AB∥DE
AB∥DE
就可以了,请把小明所说的条件补上.

查看答案和解析>>

探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
解:在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(对顶角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由.  
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立

查看答案和解析>>

探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
解:在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠______=∠______(对顶角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由. 
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

查看答案和解析>>

探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠______=∠______(对顶角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由.  
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

精英家教网

查看答案和解析>>

27、阅读理解:
某校二(1)班学生到野外活动,为测量一池塘两端A,B的距离,设计出如下几种方案:
(Ⅰ)如图先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB之长.
(Ⅱ)如图(2),先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出了DE的长即为A,B的距离.
阅读后回答下列问题:
(1)方案(Ⅰ)是否可行,理由是
利用“边角边”判断两个三角形全等,对应边就相等.

(2)方案(Ⅱ)是否可行,理由是
利用“角边角”判断两个三角形全等,对应边就相等.

(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
对应角∠ABD=∠BDE=90°
,若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?

查看答案和解析>>


同步练习册答案