设的最值情况是 A.有最大值2.最小值 B.有最大值2.最小值0 C.有最大值10.最小值 D.最值不存在 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

目前国内最大跨径的钢管混凝土拱桥--永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一部分(如图1),在正常情况下,位于水面上的桥拱跨度为350米,拱高为85.

(1)在所给的直角坐标系中(如图2),假设抛物线的表达式为yax2b,请你根据上述数据求出ab的值,并写出抛物线的表达式(不要求写自变量的取值范围,ab的值保留两个有效数字).

(2)七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小,当水位上涨 4 m 时,位于水面上的桥拱跨度有多大?(结果保留整数).

查看答案和解析>>

(2004 南宁)目前国内最大跨径的钢管混凝土拱桥——永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一部分(见图a),在正常情况下,位于水面上的桥拱跨度为350m,拱高为85m.

a)

(1)在所给的直角坐标系中(见图b),假设抛物线的表达式为,请你根据上述数据求出ab的值,并写出抛物线的表达式(不要求写自变量的取值范围,ab的值保留两个有效数字);

b)

(2)七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小.当水位上涨4m时,位于水面上的桥拱跨度有多大?(结果保留整数)

查看答案和解析>>

图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O,如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小,另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动),正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位。
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式;
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少。


查看答案和解析>>

1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O

如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.

另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按ABCDA移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).

正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.

(1)请你在图2和图3中分别画出x2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;

(2)①如图4,当1x3.5时,求yx的函数关系式;

②如图5,当3.5x7时,求yx的函数关系式;

③如图6,当7x10.5时,求yx的函数关系式;

④如图7,当10.5x13时,求yx的函数关系式.

(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为14分)

查看答案和解析>>

2008年5月l2号,四川省汶川等地发生强烈地震。在抗震救灾中,甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A、B两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区。若从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元。设从A省调往甲地台,A、B两省将捐赠的挖掘机全部调往灾区共耗资万元。

【小题1】(1)求出之间的函数关系式及自变量的取值范围;
【小题2】(2)若要使总耗资不超过15万元,有哪几种调运方案?
【小题3】(3)怎样设计调运方案使总耗资最少?最少耗资是多少万元?

查看答案和解析>>


同步练习册答案