如图四.D.E是△ABC中BC边的两个三等分点.F是AC的中点.AD与EF交于O.则等于( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.
(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.
(2)把图1中的△ACE绕着A点顺时针旋转60°到△ABF
的位置(如图2),分别连接DF、EF.
①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;
②试判断四边形CDFE的形状,并说明理由.

查看答案和解析>>

如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下五个结论:
(1)AE=CF;(2)∠APE=∠CPF;(3)三角形EPF是等腰直角三角形;(4)S四边形AEPF=
12
S△ABC;(5)EF=AP,
其中正确的有
4
4
个.

查看答案和解析>>

如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合)两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=
1
2
 S△ABC;④BE+CF=EF.上述结论始终正确的个数是(  )

查看答案和解析>>

如图,已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:
①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=
1
2
S△ABC;④EF的最小值为
2

上述结论始终正确的有(  )

查看答案和解析>>


同步练习册答案