阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S
△ABC表示△ABC的面积.

∵S
△ABC=S
△OAB+S
△OBC+S
△OCA又∵S
△OAB=
AB•r,S
△OBC=
BC•r,S
△OCA=
CA•r
∴S
△ABC=
AB•r+
BC•r+
CA•r=
l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a
1、a
2、a
3、…、a
n,合理猜想其内切圆半径公式(不需说明理由).