在梯形ABCD中.AD|BC.那么∠A:∠B:∠C:∠D可能是( ) A.1:2:3:4, B.1:2:4:3 ,C.4:3:2:1 ,D.1:4:2: 3 查看更多

 

题目列表(包括答案和解析)

如图,在直角梯形ABCD中,ADBC,∠B=∠A=90°,ADaBCbAB=c

操作示例

我们可以取直角梯形ABCD的腰CD的中点P,过点PPEAB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图1)

思考发现

小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PEPF在同一直线上,又因为在梯形ABCD中,ADBC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以ADDF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形——矩形.

实践探究

(1)矩形ABEF的面积是________.(用含a、b、c的式子表示)

(2)类比图(1)的剪接办法,请你就图(2)和图(3)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(2)和图(3)中的四边形均为梯形)

解决问题

小明原来有一块七巧板,形状为平行四边形ACDE,如图(4)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(5)所示,小明现在打算将图(5)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例

    我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).

思考发现

小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.

1.图2中,矩形ABEF的面积是               ;(用含a,b,c的式子表示)

2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.

3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.

如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

 

查看答案和解析>>

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例

    我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).

思考发现

小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.

1.图2中,矩形ABEF的面积是                ;(用含a,b,c的式子表示)

2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.

3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.

如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

 

查看答案和解析>>

如图①,等腰梯形ABCD中,AB∥CD,AB=4,CD=9,∠C=60°.
(1)求AD的长;
(2)若动点P从点C出发沿CD方向向终点D运动(如图②),在P点运动的过程中,△ABP的面积改变了吗?若改变,请说明理由;若没有改变,那么△ABP的面积为
 

(3)在(2)的条件下,过B作BH⊥AP于H(如图③),若BH=2
2
,则AP=
 

(4)在(2)的条件下,若动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达终点时,另一个动点也随之停止运动,过点Q作QM∥CD交BC于M(如图④),探究:四边形PDQM可能为菱形吗?若可能,请求出BM的长;若不可能,请说明理由.精英家教网

查看答案和解析>>

如图①,等腰梯形ABCD中,AB∥CD,AB=4,CD=10,∠C=60°.
(1)求AD的长;
(2)若动点P从点C出发沿CD方向向终点D运动(如图②),在P点运动的过程中,△ABP的面积变了吗?若改变,请说明理由;若没有改变,那么△ABP的面积为
6
3
6
3

(3)在(2)的条件下,若动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达终点时,另一个动点也随之停止运动,过点Q作QM∥CD交BC于M(如图③),探究:四边形PDQM可能为菱形吗?若可能,请求出BM的长;若不可能,请说明理由.

查看答案和解析>>


同步练习册答案