可证:△ADF≌△BCF(SAS) 查看更多

 

题目列表(包括答案和解析)

已知:如图,四边形是平行四边形,.求证:.

【解析】证线段所在的三角形全等.根据“AAS”可证△ABE≌△CDF或△ADF≌△CBE.

 

查看答案和解析>>

如图,已知以△ABC的边AC、BC分别向外作正方形ACDE和正方形BCFG.

求证:BD=AF.

欲证BD=AF,可证△ACF≌△DCB,由正方形ACDE和正方形BCFG可知AC=DC,CF=CB,∠ACD=∠BCF=90°,易证结论成立.

证明:∵四边形ACDE和四边形BCFG是正方形

∴AC=DC,CF=CB,∠ACD=∠BCF=90°

(正方形四个角都是________,四条边都________)

∴∠ACD+∠ACB=∠BCF+∠ACB

即∠ACF+∠DCB

∴△ACF≌△________(SAS)

∴AF=BD

查看答案和解析>>

我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);
(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):
①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是
 

②如图4,当四边形ABCD没有等高点时,你得到的一个结论是
 

精英家教网

查看答案和解析>>

阅读与证明:
我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等?
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1
求证:△ABC≌△A1B1C1

查看答案和解析>>

辨析纠错
已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.
求证:四边形AEDF是菱形.
对于这道题,小明是这样证明的:
证明:∵AD平分∠BAC,
∴∠1=∠2(角平分线的定义).
∵DE∥AC,∴∠2=∠3(两直线平行,内错角相等).
∴∠1=∠3(等量代换).
∴AE=DE(等角对等边).
同理可证:AF=DF,
∴四边形AEDF是菱形(菱形定义).
老师说小明的证明过程有错误.
(1)请你帮小明指出他的错误是什么.
(2)请你帮小明做出正确的解答.

查看答案和解析>>


同步练习册答案