题目列表(包括答案和解析)
| BC |
| BC |
探究问题
(1)阅读理解:
①如图1,在△ABC所在平面上存在一点P,使它到三角形三顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图2,若四边形ABCD的四个顶点在同一个圆上,则有AB·CD+BC·AD=AC·BD.此为托勒密定理.
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图3,已知点P为等边△ABC外接圆的弧BC上任意一点.求证:PB+PC=PA.
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120º)的费马点和费马距离的方法:
第一步:如图4,在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在弧BC上取一点P0,连接P0A、P0B、P0C、P0D.
易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+ ;
第三步:请你根据(1)①中定义,在图4中找出△ABC的费马点P,线段 的长度即为△ABC的费马距离.
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难.为解决老百姓饮水问题,解放军某部到云南某地打井取水.
已知三村庄A、B、C构成了如图5所示的△ABC(其中∠A、∠B、∠C均小于120º),现选取一点P打水井,使水井P到三村庄A、B、C所铺设的输水管总长度最小.求输水管总长度的最小值.
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.
(1)如图1,若∠DAB =60°,则∠AFG=__ ____;
如图2,若∠DAB =90°,则∠AFG=____ __;
![]()
![]()
图1 图2
(2)如图3,若∠DAB =
,试探究∠AFG与
的数量关系,并给予证明.;
![]()
(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90º,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;
试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com