(1)如图是边长为4的正三角形ABC.建立适当的直角坐标系.写出各个顶点的坐标. (2)分析所给图的旋转现象. 查看更多

 

题目列表(包括答案和解析)

如图是在6×5的正方形网格中(每个小正方形的边长均为1),以格点为顶点的三角形称为网格三角形,请通过画图精英家教网分析,探究回答下列问题:
(1)请在图中画出以AB为边且面积为2的一个网格三角形;
(2)任取该网格中的一点N,求以A、B、N为顶点的三角形面积为2的概率;
(3)任取该网格中的一点M,求以A、B、M为顶点的三角形中为等腰三角形的概率.

查看答案和解析>>

20、如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:

(1)这三个图案都具有以下共同特征:都是
中心
对称图形,都不是
对称图形.(4分)
(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.(4分)

查看答案和解析>>

如图所示,A、B是4×5网格中的格点(网格线的交点),网格中的每个小正方形的边长都是1.

【小题1】请在图中标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置(分别用依次标出).
【小题2】若以点A为坐标原点建立平面直角坐标系,求直线BC的解析式.(只需求一条即可)

查看答案和解析>>

如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒().

【小题1】在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
【小题2】如图2,当点A与点D重合时,作的角平分线EM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
【小题3】如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG-GD以每秒个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA-AC于P点,则是否存在t的值,使得,若存在,请求出t的值;若不存在,请说明理由

查看答案和解析>>

如图,正方形网格中的每个小正方形的边长都是1,在平面直角坐标系中,已知,ΔABO的三个顶点的坐标分别为A(2,2),B(0,4),O(0,0);
【小题1】画出ΔABO绕点O逆时针旋转900后得到的Δ0并写出点A,B的坐标;
【小题2】求旋转过程中动点B所经过的路径长。

查看答案和解析>>


同步练习册答案