已知:菱形的一条对角线与边长相等.则菱形的邻角的度数分别为 ( ) A.450.1350 B.600.1200 C.900.900 D.300.1500 查看更多

 

题目列表(包括答案和解析)

已知:如图1,菱形ABCD的边长为6,∠BAD=120°,对角线相交于O.点P是AB边上一个动点,它从A点出发,以每秒1个长度单位的速度向B点移动,E是OD的中点,连接PE并延长,交CD于F,过点P作PQ⊥BC于Q,连接PEDP、DQ,设移动时间为t(s),DF的长为z,△DPQ的面积为S.
(1)写出使△DEF∽△BEF的条件:
∠DEF=∠BEP,∠FDE=∠EBP
∠DEF=∠BEP,∠FDE=∠EBP

(2)求z关于t的函数关系式;
(3)求S关于t的函数关系式,并求出t为何值时,S最大?最大值是多少?
(4)以O为坐标原点,菱形ABCD的对角线所在的直线为坐标轴建立直角坐标系(如图2),直线EQ与x轴的交点为G,当t=2(s)时,①求直线EQ的函数解析式;②求△EOG的外接圆的面积.

查看答案和解析>>

已知:如图1,菱形ABCD的边长为6,∠BAD=120°,对角线相交于O.点P是AB边上一个动点,它从A点出发,以每秒1个长度单位的速度向B点移动,E是OD的中点,连接PE并延长,交CD于F,过点P作PQ⊥BC于Q,连接PEDP、DQ,设移动时间为t(s),DF的长为z,△DPQ的面积为S.
(1)写出使△DEF∽△BEF的条件:______;
(2)求z关于t的函数关系式;
(3)求S关于t的函数关系式,并求出t为何值时,S最大?最大值是多少?
(4)以O为坐标原点,菱形ABCD的对角线所在的直线为坐标轴建立直角坐标系(如图2),直线EQ与x轴的交点为G,当t=2(s)时,①求直线EQ的函数解析式;②求△EOG的外接圆的面积.
作业宝

查看答案和解析>>

已知:如图1,菱形ABCD的边长为6,∠BAD=120°,对角线相交于O.点P是AB边上一个动点,它从A点出发,以每秒1个长度单位的速度向B点移动,E是OD的中点,连接PE并延长,交CD于F,过点P作PQ⊥BC于Q,连接PEDP、DQ,设移动时间为t(s),DF的长为z,△DPQ的面积为S.
(1)写出使△DEF∽△BEF的条件:______;
(2)求z关于t的函数关系式;
(3)求S关于t的函数关系式,并求出t为何值时,S最大?最大值是多少?
(4)以O为坐标原点,菱形ABCD的对角线所在的直线为坐标轴建立直角坐标系(如图2),直线EQ与x轴的交点为G,当t=2(s)时,①求直线EQ的函数解析式;②求△EOG的外接圆的面积.

查看答案和解析>>

如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;
(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)

查看答案和解析>>

(2010•江苏一模)已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)若将梯形沿对角线AC折叠恰好D点与E点重合,梯形ABCD应满足什么条件,能使四边形ABFC为菱形?并加以证明;
(3)在(2)的条件下求sin∠CAF的值.

查看答案和解析>>


同步练习册答案