2.在你所了解的图形中. 是中心对称图形. 查看更多

 

题目列表(包括答案和解析)

在你所了解的图形中,(    )是中心对称图形.(写出2个即可)

查看答案和解析>>

端午节吃粽子是中华民族的传统习俗,王老师准备为班上的同学每人买一个粽子,于是他对全班同学喜欢吃的粽子种类进行了统计,并制成了如下两幅不完整的统计图:

(1)求扇形统计图中“火腿粽”部分所对应的圆心角度数,并补全条形统计图;

(2)王老师按统计的数据给每人都只买了一个粽子.端午节那天,小明和小红等几位同学最后领粽子,此时,王老师已经分发了3个红枣粽,9个豆沙粽,16个腊肉粽, 2个火腿粽和6个其它的粽子,剩余的粽子全部放在一个盒子里.小明喜欢吃的是火腿粽,小红喜欢吃的是红枣粽,王老师不看盒子,一次性从盒子里拿出两个粽子,请你用列表法或画树状图的方法求出这两个粽子恰好同时是小明和小红喜欢吃的粽子的概率.(注:列表或画图时,可用各类粽子名称的第一个字简记)

【解析】(1)根据喜欢吃腊肉月饼的人数和所占的百分比求出学生总数,再减去喜欢吃其它月饼的人数,即可求出喜欢吃火腿月饼的人数,再根据总人数即可求出圆心角度数;

(2)列举出所有情况,看一次性从盒子里拿出两个月饼,这两个月饼恰好同时是小明和小红喜欢吃的月饼所占的比例,即可求出答案.

 

查看答案和解析>>

课外兴趣小组活动时,老师提出了如下问题:

如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.

感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

(2)问题解决:

受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF.

①求证:BE+CF>EF

②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.

(3)问题拓展:

如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

(1)阅读理解:
课外兴趣小组活动时,老师提出了如下问题: 如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4。
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中。
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF。
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明。
(3)问题拓展:
如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明。

查看答案和解析>>

如图,魔术师把4张扑克牌放在桌子上,如图(1),然后蒙住眼睛,请一位观众上台把某一张牌旋转180°,魔术师解开蒙具后,看到四张牌如图(2)所示,他很快确定了
方块4
方块4
 这 张牌被旋转过,你能说明其中的奥妙吗?
这四张扑克牌中后三张上的图案,都不是中心对称图形.若它们被旋转过,则与原来的图案是不同的,魔术师通过观察发现后三张扑克牌没有变化,那么变化的自然是第一张扑克牌了.由于方块4的图案是中心对称图形,旋转过的图案与原图案完全一样,故选方块4.
这四张扑克牌中后三张上的图案,都不是中心对称图形.若它们被旋转过,则与原来的图案是不同的,魔术师通过观察发现后三张扑克牌没有变化,那么变化的自然是第一张扑克牌了.由于方块4的图案是中心对称图形,旋转过的图案与原图案完全一样,故选方块4.

查看答案和解析>>


同步练习册答案