如图5,过原点O的直线AC交y=的图象于A.C两点,AB.CD垂直于x轴,垂足分别为B.D,那么四边形ABCD的面积是( ) A. B.2k C.4k D.k 查看更多

 

题目列表(包括答案和解析)

如图,O是坐标原点,直线OA与双曲线y=在第一象限内交于点A,过点A作AB⊥x轴,垂足为B,如果OB=4tan∠AOB=

(1)求双曲线的解析式;

(2)直线AC与y轴交于点C(0,1)与x轴交于点D,求△AOD的面积.

查看答案和解析>>

如图,在平面直角坐标系中,点O是原点,点A的坐标为(4,0),以OA为一边,在第一象限作等边△OAB

(1)求点B的坐标.

(2)求经过O、A、B三点的抛物线的解析式.

(3)直线y=x与(2)中的抛物线在第一象限相交于点C,求点C的坐标;

(4)在(3)中,直线AC上方的抛物线上,是否存在一点D,使得△OCD的面积最大?如果存在。求出点D的坐标和面积的最大值,如果不存在,请说明理由.

查看答案和解析>>

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

查看答案和解析>>

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;

(2)直接写出S与t的函数关系式及自变量t的取 值范围.

(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

 

查看答案和解析>>

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

查看答案和解析>>


同步练习册答案