如图,在△ABC中,AC=BC,F为边AB上的一点,BF∶AF=m∶n.取CF的中点D.连结AD并延长交BC于点E.若BE=2EC.那么CF所在的直线与边AB有怎样的位置关系?证明你的结论.(3)E点能否成为BC中点?若能.求出相应的m∶n.若不能.证明你的结论. 查看更多

 

题目列表(包括答案和解析)

28、在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).

查看答案和解析>>

28、在△ABC中,AB=AC,∠ACB=∠ABC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所在的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间满足的数量关系,然后证明你的猜想;(提示:过点D作DH⊥CG,可得四边形EDHG是长方形)
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,试猜想DE,DF与CG之间满足的数量关系.(不用说明理由)

查看答案和解析>>

28、在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1证明:BF=CG;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.证明:DE+DF=CG;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,DE+DF=CG;否仍然成立?若成立说明理由.

查看答案和解析>>

在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆精英家教网心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F.
(1)如图,求证:△ADE∽△AEP;
(2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域;
(3)当BF=1时,求线段AP的长.

查看答案和解析>>

在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你写出BF与CG满足的数量关系,并加以证明;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,若AG:AB=5:13,BC=4
13
,求DE+DF的值.
精英家教网

查看答案和解析>>


同步练习册答案