3.当-1<<1时.化简得. -2 (C)2 (D)-2 查看更多

 

题目列表(包括答案和解析)

如图1,在平面直角坐标系xoy中,Rt△AOB的斜边OB在x轴上,其中∠ABO=30°,OB=4。

 1.直接写出,RtAOB的内心和P的坐标;

2.如图2,若将RtAOB绕其直角顶点A顺时针旋转α度(0°<α<90°),得到RtACD,直角边AD与x轴相交于点N,直角边AC与y轴相交于点M,连结MN。设△MON的面积为S△MON,△AOB的面积为S△AOB,以点M为圆心,MO为半径作⊙M,

①当直线AD与⊙M相切时,试探求S△MON与S△AOB之间的关系。

②当S△MON=S△AOB时,试判断直线AD与⊙M的位置关系,并说明理由。

 

查看答案和解析>>

把两个全等的直角三角板ABC和EFG叠放在一起,且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF的长均为4。
(1)当EG⊥AC于点K,GF⊥BC于点H时,如图23-1,求GH:GK的值.
(2)现将三角板EFG由图23-1所示的位置绕O点沿逆时针方向旋转,旋转角满足条件:
0°<<30°,如图23-2,EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你的结论.

查看答案和解析>>

一次函数的图象如图所示,当-3<<3时,的取值范围是( )

A.>4 B.0<<2 C.0<<4 D.2<<4

查看答案和解析>>

为确保信息安全,信息需要加密传输,发送方由, 接收方由.已知加密规则为:当明文a³1时,a对应的密文为a2-2a+1;当明文a<1时,a对应的密文为-a2+2a-1. 例如:明文2对应的密文是 22-2×2+1=1;明文-1对应的密文是 -(-1)2+2×(-1)-1=-4. 如果接收方收到的密文为4和-16,则对应的明文分别是               .

 

查看答案和解析>>

阅读下列材料,并解决后面的问题:

   ★ 阅读材料:

   (1) 等高线概念:在地图上,我们把地面上海拔高度相同的点连成的闭合曲线叫等高线。

     例如,如图1,把海拔高度是50米、100米、150米的点分别连接起来,就分别形成50米、100米、150米三条等高线。

   (2) 利用等高线地形图求坡度的步骤如下:(如图2)

 步骤一:根据两点A、B所在的等高线地形图,分别读出点A、B的高度;A、B两点

     的铅直距离=点A、B的高度差;

 步骤二:量出AB在等高线地形图上的距离为d个单位,若等高线地形图的比例尺为

     1:n,则A、B两点的水平距离=dn;

  步骤三:AB的坡度==

   ★请按照下列求解过程完成填空,并把所得结果直接写在答题卡上。

某中学学生小明和小丁生活在山城,如图3(示意图),小明每天上学从家A经过B沿着公路AB、BP到学校P,小丁每天上学从家C沿着公路CP到学校P。该山城等高线地形图的比例尺为1:50000,在等高线地形图上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。

 (1) 分别求出AB、BP、CP的坡度(同一段路中间坡度的微小变化忽略不计);

 (2) 若他们早晨7点同时步行从家出发,中途不停留,谁先到学校?(假设当坡度在之间时,小明和小丁步行的平均速度均约为1.3米/秒;当坡度在之间时,小明和小丁步行的平均速度均约为1米/秒)

 解:(1) AB的水平距离=1.8´50000=90000(厘米)=900(米),AB的坡度==

      BP的水平距离=3.6´50000=180000(厘米)=1800(米),BP的坡度==

            CP的水平距离=4.2´50000=210000(厘米)=2100(米),CP的坡度=   j   ;

 (2) 因为<<,所以小明在路段AB、BP上步行的平均速度均约为1.3米/秒。 因为  k   ,所以小丁在路段CP上步行的平均速度约为   l   米/秒,斜坡 AB的距离=»906(米),斜坡BP的距离=»1811(米),斜 坡CP的距离=»2121(米),所以小明从家到学校的时间==2090(秒)。

小丁从家到学校的时间约为  m   秒。因此,   n   先到学校。

 

查看答案和解析>>


同步练习册答案