Rt△ABC.两直角边的和为17厘米.斜边AB与斜边上的高的积为60平方厘米.则斜边为AB=____厘米. 查看更多

 

题目列表(包括答案和解析)

如图,Rt△ABC中,∠C=Rt∠,AC=BC=2,E,F分别为AC,AB的中点,连接EF.现将一把直角尺放在给出的图形上,使直角顶点P在线段EF(包括端点)上滑动,直角的一边始终经过点C,另一边与BF相交于G,连接AP.
(1)求证:PC=PA=PG;
(2)设EP=x,四边形BCPG的面积为y,求y与x之间的函数解析式,现有三个数
1
2
9
8
7
4
试通过计算说明哪几个数符合y值的要求,并求出符合y值时的x的值;
(3)当直角顶点P滑动到点F时,再将直角尺绕点F顺时针旋转,两直角边分别交AC,BC于点M,N,连接MN.当旋转到使MN=
10
7
时,求△APM的周长.

查看答案和解析>>

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.
(1)填空:GF的长度为
2
2
2
2
,等腰梯形DEFG的面积为
6
6

(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF’G’(如图2)
探究:在运动过程中,四边形BDG’G能否为菱形?若能,请求出此时x的值;若不能,请说明理由.

查看答案和解析>>

(2011•沙坪坝区模拟)如图1,在同一平面内,Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC与DF重合,△ABC始终保持不动.
(1)将△DEF沿CB(EB)方向平移,直到点E与点B重合为止,设平移的距离为x,两个三角形重叠部分的面积为y,写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)如图2,将△DEF绕点C逆时针旋转,旋转后得到的三角形为△D′E′F,设D′E′与AC交于点M,当∠ECE′=∠EAC时,求线段CM的长;
(3)如图3,在△DEF绕点C逆时针旋转的过程中,若设D′F所在直线与AB所在直线的交点为N,是否存在点N使△ACN为等腰三角形,若存在,求出线段BN的长,若不存在,请说明理由.

查看答案和解析>>

(2009•荆州二模)如图①,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一个等腰梯形DEFG(GF‖DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点,P点为AG上的一动点.
(1)填空:等腰梯形DEFG的面积为
6
6

(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图②).
探究1:设在运动过程中△ABC与等腰梯形DEF′G′重叠部分的面积为y,直接写出y与x的函数关系式和自变量x的取值范围;
探究2:在运动过程中,四边形BDG′G能否是菱形?若能,设过动点P且平分此菱形面积的直线交GF于去,当S△PGQ=
2
8
时,求P点的位置;若不能,请说明理由.

查看答案和解析>>

12、下列说法正确的是(  )

查看答案和解析>>


同步练习册答案