AC于点E.F.AD是底边上的高. 求证:PE+PF=2AD 查看更多

 

题目列表(包括答案和解析)

16、在等腰△ABC中,AB=AC.
(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.
(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.

查看答案和解析>>

(2012•长宁区二模)在Rt△ABC中,AB=BC=4,∠B=90°,将一直角三角板的直角顶点放在斜边AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.
(1)直角三角板绕点P旋转过程中,当BE=
0、2或4±2
2
0、2或4±2
2
时,△PEC是等腰三角形;
(2)直角三角板绕点P旋转到图(1)的情形时,求证:PD=PE;
(3)如图(3),若将直角三角板的直角顶点放在斜边AC的点M处,设AM:MC=m:n(m、n为正数),试判断MD、ME的数量关系,并说明理由.

查看答案和解析>>

在Rt△ABC中,AB=BC=4,∠B=90°,将一直角三角板的直角顶点放在斜边AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.
(1)直角三角板绕点P旋转过程中,当BE=______

查看答案和解析>>

在Rt△ABC中,AB=BC=4,∠B=90°,将一直角三角板的直角顶点放在斜边AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.
(1)直角三角板绕点P旋转过程中,当BE=______

查看答案和解析>>

在Rt△ABC中,AB=BC=4,∠B=90°,将一直角三角板的直角顶点放在斜边AC的中点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC或其延长线上交于D、E两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.
(1)直角三角板绕点P旋转过程中,当BE=______

查看答案和解析>>


同步练习册答案