实数在数轴上的位置如图2所示.则下列关系式成立的是( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

所谓配方法其实就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.该方法在数、式、方程等多方面应用非常广泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.请你用配方法解决以下问题:
(1)解方程:x2=5+2
6
;(不能出现形如
5+2
6
的双重二次根式)
(2)求证:不论m为何值,解关于x的一元二次方程x2+(m-1)x+m-3=0总有两个不等实数根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解关于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

在数学里,我们规定:a-n=
1
an
 (a≠O).无论从仿照同底数幂的除法公式来分析,还是仿照分式的约分来分析,这种规定都是合理的.正是有了这种规定,指数的范围由非负数扩大到全体整数,概念的扩充与完善使我们解决问题的路更宽了.例如a2•a-3=a2+(-3)=a-1=
1
a
.数的发展经历了漫长的过程,其实人们早就发现了非实数的数.人们规定:i2=-1,这里数i类似于实数单位1,它的运算法则与实数运算法则完全类似:2i+
1
3
i=
7
3
i(注意:由于非实数与实数单位不同,因此像2+i之类的运算便无法继续进行,2+i就是一个非实数的数),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根为±2i;如果x2=-7,那么x=±
7
i.…数的不断发展进一步证实,这种规定是合理的.
(1)想一想,作这样的规定有什么好处?
(2)试用配方法求一元二次方程x2+x+1=0的非实数解:
(3)你认为,在学习中,当面临一个新的挑战时,我们应如何面对?

查看答案和解析>>

所谓配方法其实就是逆用完全平方公式,即a2±2ab+b2=(a±b)2.该方法在数、式、方程等多方面应用非常广泛,如3+2
2
=12+2
2
+(
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.请你用配方法解决以下问题:
(1)解方程:x2=5+2
6
;(不能出现形如
5+2
6
的双重二次根式)
(2)若a2+4b2+c2-2a-8b+10c+30=0,解关于x的一元二次方程ax2-bx+c=0;
(3)求证:不论m为何值,解关于x的一元二次方程x2+(m-1)x+m-3=0总有两个不等实数根.

查看答案和解析>>

如果两个实数在数轴上的对应点和原点的距离相等,则这两个数(  )

查看答案和解析>>

8、两个实数在数轴上的对应点和原点的距离相等,则这两个数(  )

查看答案和解析>>


同步练习册答案