题目列表(包括答案和解析)
如图,在直角坐标系中,
是原点,
三点的坐标分别
,四边形
是梯形,点
同时从原点出发,分别作匀速运动,其中点
沿
向终点
运动,速度为每秒
个单位,点
沿
向终点
运动,当这两点有一点到达自己的终点时,另一点也停止运动.
![]()
(1)求直线
的解析式.
(2)设从出发起,运动了
秒.如果点
的速度为每秒
个单位,试写出点
的坐标,并写出此时
的取值范围.
(3)设从出发起,运动了
秒.当
,
两点运动的路程之和恰好等于梯形
的周长的一半,这时,直线
能否把梯形的面积也分成相等的两部分,如有可能,请求出
的值;如不可能,请说明理由.
【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验
(本题8分)在平面直角坐标系中,顺次连A(-2,1),B(-2,-1),C(2,-2),D(2,3) ,A(-2,1)各点,你会得到一个什么图形?试求出该图形的面积.
![]()
(本题8分)
在平面直角坐标系
中,
,
,
.
(1)求出
的面积.
(2)在图中作出
关于
轴的对称图形
.
(本题10分)在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B(8,0),斜边AO=10,C为AO的中点,反比例函数
的图象经过点C,且与AB交于点D。
![]()
(1)求此反比例函数的解析式;
(2)求线段AD的长度。
(本题8分)在平面直角坐标系中,点A的坐标是(1,2).
1.(1)请写出点A关于
轴的对称点A’和关于
轴的对称点A,,的坐标;
2.(2)在(1)中连结A、 A//,在
轴上找一点B,使得△ABA//为等边三角形,求出所有满足条件的B坐标;
![]()
3.(3)过点A作一条直线交y轴于点C,交x轴于点D,点C的坐标为(0,4),点D的坐标为(2,0)若点P从点D出发,以1个单位每秒的速度向x轴负方向运动;点Q从点C出发,以2个单位每秒的速度向y轴负方向运动,经过多少时间,PQ的长度等于
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com